DTE Energy® # Detroit Edison's Advanced Implementation of Community Energy Storage Systems for Grid Support (DE-OE0000229) Nicholas Carlson Senior Engineer October 20, 2011 ## **Agenda** - CES Overview - Project Team & Roles - Project Phases and Schedule - CES Operating Zones - Communication & Control Architecture - CES Modes of Operation - CES Baseline & Location Selection Criteria - CES Test Plan - Secondary Use of Electric Vehicle Batteries - Future Work ## **Community Energy Storage** - The project is a proof of concept of an aggregated Community Energy Storage (CES) system in a utility territory; demonstrating the following capabilities: - Voltage/VAR Support - Integration renewable generation - Islanding during outages - Frequency Regulation - Demonstrate the application of secondary-use EV batteries as CES devices. Identifying alternative applications for EV type batteries may accelerate the reduction of cost for electric vehicle batteries. - Identify gaps, areas of improvement, and provide suggestions on how CES devices and control algorithms can be standardized to be used across the U.S. - Provide a functional and economic analysis for using the CES system in electric utility applications. # **Project Team and Role** | Project Team Members & Roles | | | | | |-------------------------------|---|--|--|--| | Team Member | Role | | | | | DTE Energy | Project lead | | | | | | Utility participant for CES filed demo | | | | | | Project reporting | | | | | 5 ₈ C A123 SYSTEMS | CES Unit suppliers | | | | | | Factory acceptance testing | | | | | | Technical Support | | | | | KEMA≼ | CES functional testing | | | | | | Economic analysis and reporting | | | | | | Technical Support | | | | | edd | Circuit model development for baseline | | | | | | Reliability & economic dispatch algorithm | | | | | CHRYSLER | Durability & conditioning testing of EV battery | | | | | | Secondary use EV battery supplier | | | | | | Provide baseline data for EV battery | | | | | NEXTÉNERGY | Investigation of regulatory issues surrounding | | | | | | energy storage and renewables | | | | | national grid | Technical Support | | | | # **Project Phases** | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | |---|--|---|--|--| | Project Definition and NEPA Compliance | Final Design and
Construction | Commissioning and Operations | Utilization of
Secondary Use
Batteries | Write Up of
Demonstration
Assessment | | Update Project
Management Plan NEPA Compliance Baseline for
Evaluating Project
Performance Preliminary Design &
Planning | Finalize Design of CES
System CES System Design
for Project Planning, Measuring,
Architecture and
Algorithms Creation of Dispatch
Algorithms Communications and
Control Procurement of CES
Systems for Installation | Commissioning of
Operational
Functionalities Field Testing of
Designed CES
Capabilities Data Monitoring and
Collection of
Performance Data Reporting of Data and
Operation | • Integration of Secondary Use Batteries | Write final report | | 01/2010-05/2011 | 01/2011-06/2012 | 07/2012-12/2014 | 07/2013-06/2014 | 07/2014-12/2014 | ## **CES – Operating Zones** ## **Modes of Operation** - Standby Operation Mode - Locally-initiated operation due to power loss or site-specific power quality issue. - This mode of operation pre-empts all other modes unless specifically overridden. - Scheduled Operation Mode - Control is initiated by the DRSOC Hub on a pre-defined unit-specific schedule. - Automatic Generation Control (AGC) Mode - Aggregate kW output is requested by the Independent System Operator (ISO). Individual units are dispatched by the DRSOC Hub at the appropriate outputs to meet the AGC set-point. - Hub Command Mode - Control is initiated by an operator and dispatched on a unit-specific basis by the DRSOC Hub. - Peak-shaving Mode - Units are dispatched by the DRSOC Hub to ensure that circuit ratings are not exceeded. ## **Modes of Operation (Continued)** - DEW Economic & Reliability Dispatch Modes - Control is initiated by algorithms implemented in the DEW software package. - Algorithms are intended to maximize the economic potential of the unit. - May include running of the CES units in grid-parallel mode under normal circuit conditions. - Dispatching is done by the DRSOC Hub to each CES unit. - DEW Model-Based Real Time Control - CES Operation Modes: - Normal: Economic - Storm: Reliability (Load Serving) - Objective Function: - Minimize Operation Cost - Minimize Loss - Maximize Load Serving Time After Outage #### **CES - Communications Architecture** #### **DEW CES Control Module I/O** #### **Distribution Circuit in DEW** ## Simulation Results, One CES Unit ## Simulation Results, 20 CES Units #### CES Units Output and RT LMP _Weekday #### **CES Test Plan** | Testing | Test Description | | |--|--|--| | Equipment/ Factory Acceptance Test | S&C will design perform a factory acceptance test for the CES equipment KEMA will provide an independent evaluation of initial design CES equipment. | | | Functional Test | KEMA will develop a test plan and witness testing that will demonstrate the CES Unit capability to provide specific fundamental functions: i. Peak shaving, volt-VAR, demand response (ii. Remote communication and control of CES unit (DR SOC emulation) iii. Islanding iv. Respond to AGC simulated signal | | | System Test (DTE Field) | The system test and evaluation will be performed in the
field as the units are installed. | | | Testing of Automotive Batteries for
Secondary Use Application | KEMA's KERMIT model will be used for a portion of this analysis, establishing a model that projects remaining lifetime based on vehicle usage profile) | | | Comparative Test | CES Unit original design test results will be compared to
testing done on an identical CES Unit removed from
service. | | ## **Secondary Use of EV Batteries** **Battery Conditioning & Vehicle Durability Testing** #### Project Activity - Vehicle durability testing/battery conditioning started in June of 2011 - Additional vehicles assigned to this program will begin durability testing later this month #### Testing Locations for Mileage Accumulation & Battery Conditioning - Chelsea Proving Grounds Chelsea, MI - Arizona Proving Grounds Yucca, AZ - Undisclosed Public Roads throughout North America #### **Secondary Use of EV Batteries** **Battery Conditioning & Vehicle Durability Testing** #### Beginning of Vehicle Reliability Testing - Capacity Verification Test - Power pulse capability #### Quarterly - Cumulative vehicle miles - Number of charge cycles - Energy per charge and charge time - Summary of battery issues related to DOE program #### End of Automotive Useable Life – or End Vehicle Reliability Test - Capacity Total Available Energy - 10 sec power pulse capability - Total Charge / Discharge cycles - Cumulative vehicle miles #### **Future Work** - Finalize functional test plan - Test DR-SOC communication and controls with CES unit with S&C CES control unit - Test and validate DEW reliability and economic dispatch algorithm - Finalize physical design of CES unit - Begin internal CES equipment review and approval process - Begin working with communities on site approval process